
i-orm Aopwoved- -"6IMENTATION PAGE OMB No 0704-0188
A D -A 265 89 1 a g pe 'P """ " 0 9 O $WE*$ sor'ce 1 Wr C

IiI I! ll j h I ;Services. Ditecrate tot Inolfmatlon Oo>'ai-).s aW RepnS. 12-5 Jetltse,.or, Da.- ',t_,a ,0 Aj1'V,•r WA
$ %OuCon ProjeCt (0704A I a18 Washwqgon EC 20 503

111 fif P11j 1 11 11111-11.1, 1111 2 REPORT DATE 3 REPORI rVPE AN0. DATES COVERED

April 1993 Profes.siural paper

4 TITLE AND SUBTITLE 5 Fu DU:WG 'UUVbFeS

NEC2, NEC3, AND NEC4 ON A CONVEX MINI-SUPERCOM PUTER
In house fCnding

6. AUTHOR(S)

L. Koyama

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8 PERFORMING ORGANQ,1ZAO,

,{ ,.RO, UMBER

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division lc
San Diego, CA 92152-5001 _

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) I~~I~R

Naval Command, Control and Ocean Surveillance Center (NCCOSC) j r 19
RDT&E Division
San Diego, CA 92152-5001

1 I SUPPLEMENTARY NOTES

12a. DiSTRIBUTIONIAVAILABIL1TY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

A methodology was desired for optimizing the Numerical Electromagnetics Code (NEC) on a given platform. The plat-
form chosen was the Convex mini-supercomputer. The matrix fill and factor times were the guages of optimiwzng for speed.
The software tool for choosing where to optimize was the profiler that comes with the FORTRAN compiler.

NEC2, NEC3, and NEC4 were evaluated. The test cases were models of 44, 300, 722, and 2286 segments. Three levels
of built-in compiler optimizations were used. Additional optimizations were sought. The greatest speedup in runtime came
with the use of LINPACK library routines specifically optimized of the Convex.

93 93-13691

Published in 9th Annual Review of Progress in Applied Computational Electromognetics, Mar 22- 26. 1993, pp 45-52.

14 SUBJECT TERMS S %UMBER OF PAGES

"*6 PRiCE CODE

17 'A CURtI Y CIASStIGCATON 18 SECURITY CLASSIFICATION 19 SECURITY (LASSIF ('ATIONIN J0 (MITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIt" FI) UNCLASSIFIEI) UNCIASSIIIFI) SAME AS ?EtPORT

UINCLASSIFIED

21 a. NAME OF RESPONSIBLE INDIVIDUAL 21b TELEPHONE (OnCludO A"t. COCO) 21c O•fCE SYMBOL

L. Koyama (619) 553-3784 Code 824

N',. ' ,4 0 ,(t 2 V,00
.N(ISIF! El)

NEC2, NEC3, AND NEC4 ON A CONVEX MINI-SUPERCOMPUTER

Lance Koyama
NCCOSC RDTE DIV

Code 824
SAN DIEGO, CA 92152-7304

Abstract

A methodology was desired for optimizing the Numerical Electromagnetics Code (NEC)
on a given platform. The platform chosen was the Convex mini-supercomputer. The matrix
fill and factor times were the gauges of optimizing for speed. The software tool for choosing
where to optimize was the profiler that comes with the FORTRAN compiler.

NEC2, NEC3, and NEC4 were evaluated. The test cases were models of 44, 300, 722,
and 2286 segments. Three levels of built-in compiler optimizations were used. Additional
optimizations were sought. The greatest speedup in runtime came with the use of LINPACK
library routines specifically optimized for the Convex.

INTRODUCTION

This study gives a methodology for optimizing the NEC codes (or any method of
moments code) for a g*ven platform, in this case, a Convex mini-supercomputer.

The Convex Computer Corporation mini-supercomputers have become very popular
because of their higii power for the dollar. The model used for this study was the Convex C240
which is commonly classified as a mini-supercomputer. Its vector architecture makes it a
supercomputer and it is smaller than a Cray, making it a mini. Its cogent features are as
follows:

f 4 processors - 50 MegaFLOPS each
* Each processor includes scalar and vector processing units
* Peak performance - 200 MegaFLOPS
* LINPACK1000 benchmark: 162 MegaFLOPS

(Cray Y-MP): 305 MegaFLOPS DTIC QU ATy 1,ý172 a
Whetstone benchmark: 33 MIPS

(Cray Y-MP): 26 MIPS
MULTIunits benchmark: 4900

(Cray Y-MP): 6000 cesion For

NTIS CRA&B
Each processor has DTiC TAB
* 8 vector registers of 128 elements each nannoufnced o]
• Each element (word) consists of 64 bits
* There are 3 independent functional unit controllers: 1y

"* Load and Store Distribut4on I
"* Multiply and Divide -- a-iyC_
"* Add and Logical Availability Codes

Avail and I or

Sit Special

SCOPE

NEC runs were made on various combinations of the following parameters:

Name Number of Lines Number of Routines
NEC2 8,734 81
NEC3 9,780 99
NEC4 16,039 207

NEC2 was chosen for its complete documentation; NEC4, for being the latest and greatest and
NEC3 to round out the family.

Compiler Optimizations - None, Scalar, Vector, Parallel -
There are three types of automatic optimizations that come with the FORTRAN compiler.

The ,calar optimization performs a great many types of both machine .e".. ". , mach:A.C
independent optimizations on the scalar level. The vector optimization seeks loops that are
actually dealing with arrays. As much as possible, the entire loop is converted to vector
operations. The parallel optimization operates only within individual routines. It tries to spread
the processing among the four processors if it would be more efficient.

In the following discussion, the optimizations are labeled as follows.
Optimization Ty=
0 None
1 Scalar
2 Scalar + Vector
3 Scalar + Vector + Parallel

Models - 44 segment, 300 segment, 722 segment, 2286 segment -
The 44 segment model is a one wavelength loop. The 300 segment model is a monopole

on a ground plane. The 722 segment model is the US Navy's Spruance (DD-963) class
destroyer segmented for up to 6 MHz problems. The 2286 segment model is the same ship
segmented for 30 MHz problems.

Information Gathered

For each run, the following information was gathered:
"* Matrix fill, matrix factor, and total run-time
", A profile of the run listing each routine and operation used and for each:

* Percentage of total run-time used in calls to the routine or operation
• The number of calls to the routine or operation
* The time used in a call to the routine or operation

For some of the runs, some additional information was gathered: the percent used of all
the processors, the amount of memory used, the physical reads and writes, the number of page
faults, and the number of page faults paged out to disk.

Manual Optimization

Looking at the profiles of the runs, routines were chosen to be optimized beyond the
automatic optimizations of the quite intelligent compiler.

RESULTS

Verification
The impedance of an antenna on each of the models was used to verify that a run was

valid.

Profiles
To gauge the performance of each run, the profiler that comes with the FORTRAN

compiler was used. There is some overhead in its use as it performs its counts and timings as
seen in the examples below for a 722 segment model.

Fill Factor Total
NEC3, optim.2, w/o profiler 106.943 37.999 148.343

with profiler 120.596 32.316 157.349

NEC4, optim.3, w/o profiler 128.441 49.368 187.582
with profiler 155.841 45.500 213.442

All times in the following data and discussion presume the use of the profiler. You will see in
the following profiles an item called "mcount". This is one of the profiler overhead items.

The following series of profiles shows the differences between NEC2, NEC3, and NEC4
for a 722 segment model using compiler optimization 2 in all cases. The routines or functions
that take up more than 5% of the total runtime are shown.

NEC2 Fill Factor Total
177.541 32.436 213.422

%time cumsecs #call me/call name
15.7 34.84 521284 0.07 efid
15.4 69.07 1021498 0.03 -eksc-
15.2 102.82 1 33750.00 factr
14.7 135.38 4901342 0.01 -gf -
9.8 157.13 21750ms mcount
9.1 177.24 1021498 0.02 _intx_
7.5 194.00 2042996 0.01 _gx_
6.5 208.49 722 20.07 cmww

NEC3 Fill Factor Total
120.596 32.316 157.349

%time cumsecs #call ms/call name
20.5 33.62 1 33620.00 factr
17.1 61.58 887915 0.03 -ekscli
15.7 87.28 521284 0.05 -efld-
11.5 106.19 18910ms mcount
10.6 123.57 722 24.07 cmww
5.5 132.50 1351794 0.01 -mth$c exp

NEC4 Fill Factor Total
146.313 32.366 190.199

%time cumnecs #call ms/call name
17.1 33.82 286 118.25 factr
14.9 63.24 887913 0.03 _ekscl_
13.5 89.95 26710ms mcount
10.8 111.23 1042568 0.02 efldsg_
8.6 128.22 722 23.53 cmww

The following show the differences in profiles as the size of the model changes. (NEC4
is used with optimization 3).

300 segments Fill Factor Total
23.873 4.436 30.287

%time cumsecs #call ms/call name
21.0 6.00 177310 0.03 eksclr
20.9 11.96 5965ms mcount -
10.4 14.95 180000 0.02 efldsg_
9.0 17.52 300 8.60 cmww
6.3 19.32 1 1800.00 -factF
5.8 20.98 544795 0.00 _mth$c div

722 segments Fill Factor Total
155.841 45.500 213.442

%time cumsecs #cal? ms/call name
19.8 38.00 38000ms mcount
15.5 67.62 887913 0.03 eksclr
9.7 86.29 1042568 0.02 efldsg_
9.2 103.96 286 61.78 _factr
9.2 121.52 722 24.32 cmww
5.0 131.03 3178604 0.00 _mth$c_div

2286 segments Fill Factor Total
1437.447 5678.125 7220.752

%time cumsecs #call ms/call name
52.3 1747.24 756 2311.16 factr
10.0 2082.34 335105ms mcount-
9.8 2410.93 9918973 0.03 eksclr
5.6 2596.86 10451592 0.02 efldmg-
5.4 2776.95 2286 78.78 _cmww

2286 segments LINPACK routines
Fill Factor Total

1451.863 700.771 2304.245

%time cumsecs #call ms/call name
18.4 334.04 334040ms mcount
18.3 665.41 9918973 0.03 eksclr
10.6 858.13 10451592 0.02 efldsg_
10.4 1046.93 188800ms _cgefa_
9.7 1223.06 2286 77.05 cmww
5.3 1319.97 10451592 0.01 -ekscsz
5.0 1410.89 31597174 0.00 _mth$cdiv

The last profile was of a run using LINPACK routines, discussed next.

Manual Optimization
A widely available set of routines for solving linear equations, called LUNPACK, was

available specifically optimized for the Convex hardware. Two routines were chosen to replace
the matrix factor and solve portions of the NEC codes.

Function NEC routine LINPACK routine
Factor matrix factr cgefa
Solve matrix solve cgesl

In both cases, because of the way NEC stores matrices, the interaction matrix had to be
transposed before and after the LINPACK routines were used.

Next, routines high in the profile list were sought that could benefit from manipulation
so that the compiler could vectorize them. In NEC2: efld, eksc, gf, intx, and rest all had no
loops. In NEC4: eksclr, efldsg, and ekscsz all had no loops. In both: cmww was already
automatically 70% vectorized by the compiler. All other routi~aes consumed less than 5 % of the
total runtime. It was not considered worthwhile to continue the optimization effort.

Runtimes
The following lists the impedances and runtimes of the significant runs.

Impedance Times (seconds)
Seaments NEC OPtim LinPack R X FILL FACTOR TOTAL

44 2 2 100.6 -139.1 0.36 0.02 0.47
44 4 3 100.3 -140.6 0.47 0.05 0.69
44 4 3 yes 100.3 -140.6 0.47 0.01 0.66

300 2 0 232.3 -36.4 9.54 19.28 29.86
300 2 1 232.3 -36.4 9.20 12.97 22.98
300 2 2 232.3 -36.4 10.23 2.36 13.30
300 2 3 232.3 -36.4 10.63 4.39 15.80
300 4 3 240.3 -37.1 23.87 4.44 30.29
300 4 3 yes 240.3 -37.1 24.12 1.71 27.86
722 2 0 20.3 -0.S 168.27 268.14 441.56
722 2 1 20.3 -0.5 176.80 180.83 361.73
722 2 2 20.3 -0.4 177.54 32.44 213.42
722 2 2 yes 20.3 -0.4 176.06 22.08 202.21
722 2 3 20.3 -0.4 179.58 45.46 228.81
722 3 2 19.7 -2 120.60 32.32 157.35
722 4 2 23 0.5 146.31 32.37 190.20
722 4 3 23 0.5 155.84 45.50 213.44
722 4 3 yes 23 0.5 157.37 22.18 193.51

2286 4 3 34 20.8 1437.45 5678.13 7220.75
2286 4 3 yes 34 20.8 1451.86 700.77 2304.25

In matrix format
FILL RUNTIMES (sec)

Segments jNECI Optimization0 1.. 1l il° I 2 UnP I3 UnP
44 2 0.36

4 0.47 0.47
300 2 10 9 10 11

4 24 24
722 2 168 177 178 176 180

3 121
4 146 156 157

2286 4 1437 1452

FACTOR RUNTIMES (soc)

Segments, NEC oPtimization
0 11 12 UnP3 LunP

44 2 0.02

4 0.05 0.01
300 2 19 13 2 4

4 4 2

722 2 268 181 32 22 45
3 32

4 32 46 22

2286 4 5678 701

TOTAL RUNTIMES (sec)

Segments N EC Optimization

1 11 12 UnP 13 UP

44 2 0.47
4 0.69 0.66

300 2 30 23 13 16
4 30 28

722 2 442 362 213 202 229
"3 157
4 190 213 194

2286 4 7221 2304

Figures 1, 2, 3, 4, and 5 graphically show the trends in the data.

CONCLUSIONS

Just as important as the speed of the machine is the way the software utilizes its
resources. For the case of the Convex computer used in this study, the automatic optimizations
supplied with its FORTRAN compiler cut the time for a NEC run in half for a 722 segment
model.

Library routines optimized for a machine's hardware should be used whenever possible
to replace existing code. Two routines especially appropriate for a method of moments code are
the matrix factor and matrix solve routines from the LINPACK library. These had been
optimized for the Convex hardware. For a 2,286 segment model, they cut the factor time by
a factor of 8 resulting in an overall runtime improvement of a factor of 3.

REFERENCES

I. G. J. Burke and A. J. Poggio, Numerical Electromagnetics Code (NEC) - Method of
Moments, Lawrence Livermore National Laboratory, Report UCID-18834, January 1981

2. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill Book Company, 1965

3. "VECI.IB Programmer's Reference", CONVEX Computer Corporation, August 1991

722 Segment Model - (Optim. 2)

220 -

"200- Fill

180 t..,.

160

~.140 Towa

, 120

J 100
L

60

40

201
i2 3

NEC Version

Figure 1. Runtime Variation with NEC Version Number

722 Segment Model - NEC2

450-

400 Fill

350
350- Factor

u300-
* TotalF

250

200-

o150

100

50

Optimization

Figure 2. Runtime Variation with Optimization Level

NEC4, Optimization 3

10000

1000
Fill

Factor

Total

E 10

o t

10 100 1000 10000
Number of Segments (N)

Figure 3. Runtime Variation with Number of Segments

NEC4. Optimization 3

too%-

-0 Factor~

190% M
* ~Fillj

R60%-

201

Number of Segments

Figure 4. Percentage of Time in Fill and Factor for Different Model Sizes

NEC4, Optimization 3

8 -+ Fill

E Factor

4) 5- Total

04-

01

0 500 1600 15ý00 2000 2500
Number of Segments

Figure 5. Improvement by Using LINPACK Routines

